Academic Course Description

BHARATH UNIVERSITY

Faculty of Science and Humanities

Department of Mathematics

BMA402 NUMERICAL METHODS

Fourth Semester, 2016-17 (Even Semester)

Course (catalog) description

From Unit I ultimatey results in finding the numerical solutions for eigen values and eigen vectors for square matrices. In Unit II, we interpolate the unknown arguments between any given values, in engineering applications this is called as smoothing functions. Unit III states polynomial approximation is quite accurate when we use numerical methods. Various numerical integration formula gives different approximation to this area. In unit IV many problems in science and engineering can be reduced to the problem of solving differential equation satisfying certain conditions. In unit V we obtain a unique solution of ODE and PDE'S subject to the certain specific conditions

Compulsory/Elective course: Compulsory for all branches except IBT,GEN.

Credit & Contact hours : 4 & 75

Course Coordinator : Ms.J.Arthy, Asst. Professor

Instructors :

Name of the instructor	Class	Office location	Office	Email (domain:@	Consultation
	handling		phone	bharathuniv.ac.in	
J. ARTHY	II ECE	SA BLOCK		jamesarthy@gmail.com	12.45-1.15 PM
G.SUBASHINI	II ECE	SA BLOCK		Suba.thulam@gmail.com	12.30-1.00 pm

Relationship to other courses:

Pre – requisites : Mathematics I, II & III

Assumed knowledge : The students will have a mathematics background obtained at a high school (or

Equivalent) level. In particular, working knowledge of basic mathematics which interpolate and extrapolate the values. It help us to find the numerical values for integration,

differentiation, ODE, PDE when initial boundary conditions are given.

Following courses : -

UNIT I SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEM

9+6

Iterative method, Newton-Raphson method for single variable-solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedal methods, Inverse of matrix by Gauss-Jordan method, Eigen value of a matrix power and Jacobian methods.

UNIT II INTERPOLATION (FINITE DIFFERENCES)

9+6

Newton's Divide difference formula, Lagrange's Interpolation, forward and backward difference formula Stirling's, Bessel's central difference formula.

UNIT III NUMERICAL DIFFERNTIATION AND INTEGRATION

9+6

Numerical Differentiation with interpolation polynomials, Numerical integration by Trapezoidal Simpson's (Both 1/3" and 3/8") rule, Double integrals using Trapezoidal and Simpson's rule.

UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

9+6

Single step methods, Taylor series, Euler and modified Euler, Runge kutta method of first and second order differential equations, multiple step methods, Milne and Adam's –bash forth predict and corrected method.

UNIT V BOUNDARY VALUE PROBLEMS FOR ODE AND PDE

9+6

Finite difference for the second order ordinary differential equations, finite difference solutions for one dimensional heat equations (both implicit and explicit), one dimensional wave equation, Two dimensional, Laplace and Poisson equation.

Computer usage: Nil

Professional component

General - 0%
Basic Sciences - 100%
Engineering sciences & Technical arts - 00%
Professional subject - 0%

Broad area: Eigen values, Interpolation, Numerical integration and Differentiation, Initial value problems for ODE, Boundary value problems for ODE and PDE.

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April last week	Session 1 to 45	3 Hrs
4	University	ТВА	All sessions / Units	3 Hrs.
	Examination			

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of Mathematics. This course emphasizes:		Correlates to program outcome	
	Н	М	L
 To develop an understanding of the fundamentals in finding the solutions of the equation and to find the eigen vaue of the matrix 	b,c,d,j	a,f,k	e,g
2. To develop the ability to solve problems in Interpolation	b,c,f	a,d,g,h	j
3. To understand the concepts of Numerical Differentiation and Integration	a,d,e	b,g	j,k
To develop students problem solving techniques for Initial value problems for ODE	a,d,e	b,g,h,k	f,j
5. To learn the uses of Boundary value problems for ODE and PDE	а	a,b,c,d,g	j,k

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter	
	UNIT I SOLUTION OF EQUATION AND EIGE	N VALUE PROBLEMS		
1.	ITERATION METHOD -INTRODUCTION	Yes		
2.	NEWTON RAPHSON METHOD FOR	Yes		
	SINGLE VARIABLE			
3.	PROBLEMS	Yes	[T1]	
4.	SOLUTION OF LINEAR SYSTEM BY GEM	Yes		
5.	GAUSS JORDAN METHOD	Yes		
6.	GAUSS JACOBI METHOD	Yes		
7.	GUASS SIEDEL METHOD	Yes		
8.	PROBLEMS	Yes		
9.	INVERSE OF THE MATRIX BY GJM	Yes		
10.	EIGEN VALUE OF MATRIX BY POWER METHOD	Yes		
11.	EIGEN VALUE OF MATRIX BY GACOBI METHOD	Yes		
12.	PROBLEMS	Yes		
	UNIT II INTERPOLATION(FINITE DIFFERENCE	CE)		
13.	FINITE DIFFERENCE-FORWARD TABLE	Yes		
14.	FINITE DIFFERENCE-BACKWARD TABLE	Yes		
15.	PROBLEMS	Yes	1	
16.	NEWTONS FORWARD INTERPOLATION	Yes		
17.	FORMULA NEWTON BACKWARD INTERPOLATION	Yes	[T2]	
17.	FORMULA	res	[12]	
18.	NEWTON'S DIVIDED DIFFERENCE	Yes	-	
10.	FORMULA	103		
10		Vac		
19.	PROBLEMS	Yes		
20.	LAGRANGES INTERPOLATION FORMULA	Yes		
21.	INVERSE INTERPOLATION	Yes		
22.	STIRLINGS FORMULA	Yes		
23.	BESSELS FORMULAA	Yes	-	
24.	PROBLEMS	Yes	-	
ר אר				
25.	NEWTONS FORWARD DIFFERENCE FORMULA TO GET THE DERIVATIVES	Yes		
26.	NEWTONS BACKWARD DIFFERENCE FORMULA TO GET THE DERIVATIVESW	Yes		
27.	TO FIND THE MAXIMA AND MINIMA OF	Yes	[T3]	
		200 4 of 8	r. = 1	

Page **4** of **8**

	A FUNCTION GIVEN THE TABULAR		
	VALUES		
28.	PROBLEMS	Yes	
29.	NUMERICAL INTEGRATION	Yes	
30.	TRAPEZOIDAL RULE	Yes	
31.	SIMPSONS ONE THIRD AND THREE	Yes	
22	EIGTH RULE		
32.	PROBLEMS POMETUOD	yes	_
33. 34.	ROMBERGS METHOD TRAPEZOIDAL RULE FOR DOUBLE	Yes Yes	
34.	INTEGRATION	res	
35.	SIMPSONS RULE FOR	Yes	
	DOUBLEINTEGRATION		
36.	PROBLEMS	Yes	
	UNIT IV INTIAL VALUE PROBLEMS FOR	ODE	_
37.	SOLUTIONS BY TAYLORS SERIES	Yes	
38.	TAYLORS SERIES-HIGHER ORDER	Yes	
	DIFFERENTIAL EQUATIONS		[T4]
39.	EULERS AND MODIFIED EULERS	Yes	
	METHOD		
	METHOD		
40.	PROBLEMS	Yes	
41.	I AND II ORDER DIFFERENTIAL	Yes	
	EQUATIONS		
42.	RUNGE KUTTA METHOD	Yes	
43.	RUNGE KUTTA METHOD-HIGHER	Yes	
	ORDER DE		
44.	PROBLEMS	Yes	_
45.	RK METHOD FOR SIMULTANEOUS FIRSR	Yes	_
13.		163	
	ORDER EQUATION		
46.	MILENS PREDICTOR AND CORRECTOR	Yes	
	METHOD		
47.	ADAMS BASHFORTH PREDICTOR AND	Yes	
.,,	CORRECTOR FORMULA		
48.	PROBLEMS	Yes	
	UNIT V BOUNDARY VALUE PROBLEM		
	FOR ODE AND PDE		
49.	CLASSIFICATION OF PDE OF SECOND	Yes	
	ORDER		
50.	DIFFERENCE QUOTIENTS FORMULA	Yes	1
51.	SOLUTION OF LAPALCE EQUATION	Yes	-

52.	LIEBMANNS ITERATION PROCESS	Yes	
53.	PROBLEMS	Yes	
54.	DIAGONAL FIVE POINT FORMULA	Yes	[T5]
55.	STANDARD FIVE POINT FORMULA	Yes	[13]
56.	PROBLEMS	Yes	
57.	BENDER SCHMIDT METHOD	Yes	
58.	CRANK NICHOLSON METHOD	Yes	
59.	HYPERBOLIC EQUATION	Yes	
60.	PROBLEMS	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test – I
 5%

 Cycle Test – II
 5%

 Model Test
 10%

 Assignments/Seminar/online test/quiz
 5%

 Attendance
 5%

 Final exam
 70%

Prepared by: J.ARTHY, Assistant professor, Department of Mathematics Dated:

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering
- b) An ability to design and conduct experiments, as well as to analyze and interpret data
- c) An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) An ability to function on multidisciplinary teams
- e) An ability to identify, formulate, and solve engineering problems
- f) An understanding of professional and ethical responsibility
- g) An ability to communicate effectively
- h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i) A recognition of the need for, and an ability to engage in life-long learning
- j) A knowledge of contemporary issues
- k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

BMA402- NUMERICAL METHODS

Course Teacher	Signature
ARTHY.J	

Course Coordinator HOD